If it's not what You are looking for type in the equation solver your own equation and let us solve it.
350-156x-12x^2=0
a = -12; b = -156; c = +350;
Δ = b2-4ac
Δ = -1562-4·(-12)·350
Δ = 41136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41136}=\sqrt{16*2571}=\sqrt{16}*\sqrt{2571}=4\sqrt{2571}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-156)-4\sqrt{2571}}{2*-12}=\frac{156-4\sqrt{2571}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-156)+4\sqrt{2571}}{2*-12}=\frac{156+4\sqrt{2571}}{-24} $
| 3.800=3.8x10 | | 12+3x=x-4 | | |x-5|=5 | | (20-3x)+x=180 | | 32-x/2=10 | | 8x+5+2x+15=180 | | 14+t/11=17 | | 9(h-81)=81 | | 4r-13r=81 | | 8+5/x-1=5 | | 22=1/4x+2/3x | | x/2=34/7 | | 7/x+2=16 | | t/4+15=21 | | x+6*3=-6 | | 2j+2=12 | | (M-7)(m-9)=9 | | 13x+5=8x+20 | | 9w^2-30=-25 | | (4x-1)^2=20x-5 | | 0.50x+0.30(-x+100)=22 | | -3y+14=-15 | | x/4+10=26 | | 3w^2+w-884=0 | | 0=80t-16^2 | | 3w^2+w-844=0 | | 13=1/3(9x-6) | | x/9-5=-3 | | s÷4=9 | | 4.50+535=12n | | 3w^2+w-80=0 | | F(x)=4^x |